快速而肮脏的文档分析:在 Python 中结合 GOT-OCR 和 LLama

wufei123 2025-01-26 阅读:3 评论:0
让我们探索一种结合ocr和llm技术分析图像的方法。虽然这不是专家级方案,但它源于实际应用中的类似方法,更像是一个便捷的周末项目,而非生产就绪代码。让我们开始吧! 目标: 构建一个简单的管道,用于处理图像(或PDF),利用OCR提取文本,再...

让我们探索一种结合ocr和llm技术分析图像的方法。虽然这不是专家级方案,但它源于实际应用中的类似方法,更像是一个便捷的周末项目,而非生产就绪代码。让我们开始吧!

目标:

构建一个简单的管道,用于处理图像(或PDF),利用OCR提取文本,再用LLM分析文本以获取有价值的元数据。这对于文档自动分类、来信分析或智能文档管理系统非常有用。我们将使用一些流行的开源工具,简化流程。

前提:

本文假设您已熟悉Hugging Face Transformers库。如不熟悉,请参考Hugging Face Transformers快速入门。

所需库:

我们将使用torch、transformers、pymupdf和rich库。rich用于提升控制台输出的可读性。

import json
import time
import fitz

import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer

from rich.console import Console
console = Console()

图像准备:

我们将使用Hugging Face官网首页作为测试样本。为了模拟实际应用场景,我们假设输入为PDF,需要将其转换为PNG格式以便模型处理:

input_pdf_file = "./data/ocr_hf_main_page.pdf"
output_png_file = "./data/ocr_hf_main_page.png"

doc = fitz.open(input_pdf_file)
page = doc.load_page(0)
pixmap = page.get_pixmap(dpi=300)
img = pixmap.tobytes()

with console.status("正在将PDF转换为PNG...", spinner="monkey"):
    with open(output_png_file, "wb") as f:
        f.write(img)

快速而肮脏的文档分析:在 Python 中结合 GOT-OCR 和 LLama

OCR处理:

我测试过多种OCR方案,最终选择ucaslcl/got-ocr2_0 (https://www.php.cn/link/c29568179ca4f6e62552f14d69b810b2) 效果最佳。

tokenizer = AutoTokenizer.from_pretrained(
    "ucaslcl/got-ocr2_0",
    device_map="cuda",
    trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
    "ucaslcl/got-ocr2_0",
    trust_remote_code=True,
    low_cpu_mem_usage=True,
    use_safetensors=True,
    pad_token_id=tokenizer.eos_token_id,
)
model = model.eval().cuda()


def run_ocr(func: callable, text: str):
    start_time = time.time()
    res = func()
    final_time = time.time() - start_time

    console.rule(f"[bold red] {text} [/bold red]")
    console.print(res)
    console.rule(f"耗时: {final_time:.2f} 秒")

    return res

result_text = None
with console.status(
    "正在进行OCR处理...",
    spinner="monkey",
):
    #  此处需要调整,根据got-ocr2_0的实际接口进行修改
    result_text = run_ocr(
        lambda: model.generate(
            input_ids=tokenizer(output_png_file, return_tensors="pt").input_ids.cuda(),
            max_length=512
        ),
        "纯文本OCR结果",
    )

got-ocr2_0支持多种输出格式,包括HTML。 此处展示了纯文本输出示例:

hugging face- the al community building the future.  https: / / hugging face. co/  search models, datasets, users. . .  following 0
...

LLM分析:

我们将使用meta-llama/llama-3.2-1b-instruct进行文本分析。 我们将进行文本分类、情感分析等基本操作。

prompt = f"分析以下文档文本,并生成包含以下字段的JSON元数据:标签(tags)、语言(language)、机密性(confidentiality)、优先级(priority)、类别(category)和摘要(summary)。只提供JSON数据,开头为{{,不包含任何解释。 文档文本:{result_text}"

model_id = "meta-llama/llama-3.2-1b-instruct"
pipe = pipeline(
    "text-generation",
    model=model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
messages = [
    {"role": "system", "content": "你将分析提供的文本并生成JSON输出。"},
    {"role": "user", "content": prompt},
]

with console.status(
    "正在使用LLM分析文本...",
    spinner="monkey",
):
    outputs = pipe(
        messages,
        max_new_tokens=2048,
    )

result_json_str = outputs[0]["generated_text"].strip()
#  移除可能存在的代码块标记
if result_json_str.startswith("```json") and result_json_str.endswith("```"):
    result_json_str = result_json_str[7:-3].strip()

parsed_json = json.loads(result_json_str)

with console.status(
    "正在保存结果到文件...",
    spinner="monkey",
):
    with open("result.json", "w") as f:
        json.dump(parsed_json, f, indent=4)

示例输出:

{
  "tags": ["Hugging Face", "AI", "machine learning", "models", "datasets"],
  "language": "en",
  "confidentiality": "public",
  "priority": "normal",
  "category": "technology",
  "summary": "This text describes Hugging Face, a platform for AI models and datasets."
}

总结:

我们构建了一个简单的管道,可以处理PDF,提取文本,并使用LLM进行分析。 这只是一个起点,可以根据实际需求进行扩展,例如添加更完善的错误处理、多页面支持,或尝试不同的LLM模型。 记住,这只是众多方法中的一种,选择最适合您特定用例的方法至关重要。

请注意,代码中部分内容需要根据got-ocr2_0的具体API进行调整。 此外,提示工程的优化可以显著提升LLM的输出质量。

以上就是快速而肮脏的文档分析:在 Python 中结合 GOT-OCR 和 LLama的详细内容,更多请关注知识资源分享宝库其它相关文章!

版权声明

本站内容来源于互联网搬运,
仅限用于小范围内传播学习,请在下载后24小时内删除,
如果有侵权内容、不妥之处,请第一时间联系我们删除。敬请谅解!
E-mail:dpw1001@163.com

分享:

扫一扫在手机阅读、分享本文

发表评论
热门文章
  • 华为 Mate 70 性能重回第一梯队 iPhone 16 最后一块遮羞布被掀

    华为 Mate 70 性能重回第一梯队 iPhone 16 最后一块遮羞布被掀
    华为 mate 70 或将首发麒麟新款处理器,并将此前有博主爆料其性能跑分将突破110万,这意味着 mate 70 性能将重新夺回第一梯队。也因此,苹果 iphone 16 唯一能有一战之力的性能,也要被 mate 70 拉近不少了。 据悉,华为 Mate 70 性能会大幅提升,并且销量相比 Mate 60 预计增长40% - 50%,且备货充足。如果 iPhone 16 发售日期与 Mate 70 重合,销量很可能被瞬间抢购。 不过,iPhone 16 还有一个阵地暂时难...
  • 酷凛 ID-COOLING 推出霜界 240/360 一体水冷散热器,239/279 元

    酷凛 ID-COOLING 推出霜界 240/360 一体水冷散热器,239/279 元
    本站 5 月 16 日消息,酷凛 id-cooling 近日推出霜界 240/360 一体式水冷散热器,采用黑色无光低调设计,分别定价 239/279 元。 本站整理霜界 240/360 散热器规格如下: 酷凛宣称这两款水冷散热器搭载“自研新 V7 水泵”,采用三相六极马达和改进的铜底方案,缩短了水流路径,相较上代水泵进一步提升解热能力。 霜界 240/360 散热器的水泵为定速 2800 RPM 设计,噪声 28db (A)。 两款一体式水冷散热器采用 27mm 厚冷排,...
  • 惠普新款战 99 笔记本 5 月 20 日开售:酷睿 Ultra / 锐龙 8040,4999 元起

    惠普新款战 99 笔记本 5 月 20 日开售:酷睿 Ultra / 锐龙 8040,4999 元起
    本站 5 月 14 日消息,继上线官网后,新款惠普战 99 商用笔记本现已上架,搭载酷睿 ultra / 锐龙 8040处理器,最高可选英伟达rtx 3000 ada 独立显卡,售价 4999 元起。 战 99 锐龙版 R7-8845HS / 16GB / 1TB:4999 元 R7-8845HS / 32GB / 1TB:5299 元 R7-8845HS / RTX 4050 / 32GB / 1TB:7299 元 R7 Pro-8845HS / RTX 2000 Ada...
  • python怎么调用其他文件函数

    python怎么调用其他文件函数
    在 python 中调用其他文件中的函数,有两种方式:1. 使用 import 语句导入模块,然后调用 [模块名].[函数名]();2. 使用 from ... import 语句从模块导入特定函数,然后调用 [函数名]()。 如何在 Python 中调用其他文件中的函数 在 Python 中,您可以通过以下两种方式调用其他文件中的函数: 1. 使用 import 语句 优点:简单且易于使用。 缺点:会将整个模块导入到当前作用域中,可能会导致命名空间混乱。 步骤:...
  • Nginx服务器的HTTP/2协议支持和性能提升技巧介绍

    Nginx服务器的HTTP/2协议支持和性能提升技巧介绍
    Nginx服务器的HTTP/2协议支持和性能提升技巧介绍 引言:随着互联网的快速发展,人们对网站速度的要求越来越高。为了提供更快的网站响应速度和更好的用户体验,Nginx服务器的HTTP/2协议支持和性能提升技巧变得至关重要。本文将介绍如何配置Nginx服务器以支持HTTP/2协议,并提供一些性能提升的技巧。 一、HTTP/2协议简介:HTTP/2协议是HTTP协议的下一代标准,它在传输层使用二进制格式进行数据传输,相比之前的HTTP1.x协议,HTTP/2协议具有更低的延...