简述优化 Linux 内存性能的核心思想(简述.内存.优化.核心.性能...........)

wufei123 2025-01-05 阅读:5 评论:0
今天分享一篇内存性能优化的文献,文献采用了大量精美的图解,深入浅出地分析了 linux 内核 slab 性能优化的核心原则。 slab是 Linux 内核中用于小对象内存分配的主要算法,文献探讨了在不同场景下内存分配可能出现的各种性能问题,...

今天分享一篇内存性能优化的文献,文献采用了大量精美的图解,深入浅出地分析了 linux 内核 slab 性能优化的核心原则。

slab是 Linux 内核中用于小对象内存分配的主要算法,文献探讨了在不同场景下内存分配可能出现的各种性能问题,并提供了优化方案。这对于我们设计高性能内存池算法或者在未来处理内存性能问题时具有一定的启示,值得我们借鉴。

Linux 内核的 slab源自一种简单的想法,即预先准备一些常被频繁分配和释放的数据结构。然而,标准的 slab 实现过于复杂且维护成本高,于是演变出了更为精简的 slub 算法,因此本文所讨论的是 slub,稍后提及的 slab 都指 slub。

由于本文主要关注内核优化方面的内容,若想深入了解 slab 的细节和代码实现,请参阅源码。

单CPU场景下简单的slab算法

下列图示展示了在单个 CPU 上,slab 在分配和释放对象时的情景序列:

简述优化 Linux 内存性能的核心思想

可以看出,非常之简单,而且完全达到了slab设计之初的目标。

扩展到多核心CPU

现在我们简单地将上面的模型扩展到多核心CPU,同样差不多的分配序列如下图所示:

简述优化 Linux 内存性能的核心思想

我们看到,在只有单一slab的时候,如果多个CPU同时分配对象,冲突是不可避免的,解决冲突的几乎是唯一的办法就是加锁排队,然而这将大大增加延迟,我们看到,申请单一对象的整个时延从T0开始,到T4结束,这太久了。

多CPU无锁化并行化操作的直接思路:复制给每个CPU一套相同的数据结构不二法门就是增加“每CPU变量”。对于slab而言,可以扩展成下面的样子:

简述优化 Linux 内存性能的核心思想

如果以为这么简单就结束了,那这就太没有意义了。

问题

首先,我们来看一个简单的问题,如果单独的某个CPU的 slab 缓存没有对象可分配了,但是其它 CPU 的 slab 缓存仍有大量空闲对象的情况,如下图所示: 简述优化 Linux 内存性能的核心思想

这是可能的,因为对单独一种slab的需求是和该CPU上执行的进程/线程紧密相关的,比如 如果CPU0只处理网络,那么它就会对skb等数据结构有大量的需求,对于上图最后引出的问题,如果我们选择从伙伴系统中分配一个新的page(或者pages,取决于对象大小以及slab cache的order),那么久而久之就会造成slab在CPU间分布的不均衡,更可能会因此吃掉大量的物理内存,这都是不希望看到的。

在继续之前,首先要明确的是,我们需要在CPU间均衡slab,并且这些必须靠slab内部的机制自行完成,这个和进程在CPU间负载均衡是完全不同的,对进程而言,拥有一个核心调度机制,比如基于时间片,或者虚拟时钟的步进速率等,但是对于slab,完全取决于使用者自身,只要对象仍然在使用,就不能剥夺使用者继续使用的权利,除非使用者自己释放。因此slab的负载均衡必须设计成合作型的,而不是抢占式的。

好了。现在我们知道,从伙伴系统重新分配一个page(s)并不是一个好主意,它应该是最终的决定,在执行它之前,首先要试一下别的路线。

现在,我们引出第二个问题,如下图所示:

简述优化 Linux 内存性能的核心思想

谁也不能保证分配slab对象的CPU和释放slab对象的CPU是同一个CPU,谁也不能保证一个CPU在一个slab对象的生命周期内没有分配新的page(s),这期间的复杂操作谁也没有规定。这些问题该怎么解决呢?事实上,理解了这些问题是怎么解决的,一个slab框架就彻底理解了。

问题的解决-分层slab cache

无级变速总是让人向往。如果一个CPU的slab缓存满了,直接去抢同级别的别的CPU的slab缓存被认为是一种鲁莽且不道义的做法。

那么为何不设置另外一个slab缓存,获取它里面的对象不像直接获取CPU的slab缓存那么简单且直接,但是难度却又不大,只是稍微增加一点消耗,这不是很好吗?

事实上,CPU的L1,L2,L3 cache不就是这个方案设计的吗?这事实上已经成为cache设计的不二法门。这个设计思想同样作用于slab,就是Linux内核的slub实现,现在可以给出概念和解释了。

  1. Linux kernel slab cache:一个分为3层的对象cache模型。
  2. Level 1 slab cache:一个空闲对象链表,每个CPU一个的独享cache,分配释放对象无需加锁。
  3. Level 2 slab cache:一个空闲对象链表,每个CPU一个的共享page(s) cache,分配释放对象时仅需要锁住该page(s),与Level 1 slab cache互斥,不互相包容。
  4. Level 3 slab cache:一个page(s)链表,每个NUMA NODE的所有CPU共享的cache,单位为page(s),获取后被提升到对应CPU的Level 1 slab cache,同时该page(s)作为Level 2的共享page(s)存在。
  5. **共享page(s)**:该page(s)被一个或者多个CPU占有,每一个CPU在该page(s)上都可以拥有互相不充图的空闲对象链表,该page(s)拥有一个唯一的Level 2 slab cache空闲链表,该链表与上述一个或多个Level 1 slab cache空闲链表亦不冲突,多个CPU获取该Level 2 slab cache时必须争抢,获取后可以将该链表提升成自己的Level 1 slab cache。

该 slab cache 的图示如下:

简述优化 Linux 内存性能的核心思想

其行为如下图所示:

简述优化 Linux 内存性能的核心思想

2个场景

对于常规的对象分配过程,下图展示了其细节:

简述优化 Linux 内存性能的核心思想

事实上,对于多个CPU共享一个page(s)的情况,还可以有另一种玩法,如下图所示:

简述优化 Linux 内存性能的核心思想

伙伴系统

前面我们简短的体会了Linux内核的slab设计,不宜过长,太长了不易理解.但是最后,如果Level 3也没有获取page(s),那么最终会落到终极的伙伴系统,伙伴系统是为了防内存分配碎片化的,所以它尽可能地做两件事:

  1. 尽量分配尽可能大的内存
  2. 尽量合并连续的小块内存成一块大内存

我们可以通过下面的图解来理解上面的原则:

简述优化 Linux 内存性能的核心思想

注意,本文是关于优化的,不是伙伴系统的科普,所以我假设大家已经理解了伙伴系统。

鉴于slab缓存对象大多数都是不超过1个页面的小结构(不仅仅slab系统,超过1个页面的内存需求相比1个页面的内存需求,很少),因此会有大量的针对1个页面的内存分配需求。从伙伴系统的分配原理可知,如果持续大量分配单一页面,会有大量的order大于0的页面分裂成单一页面,在单核心CPU上,这不是问题,但是在多核心CPU上,由于每一个CPU都会进行此类分配,而伙伴系统的分裂,合并操作会涉及大量的链表操作,这个锁开销是巨大的,因此需要优化!

Linux内核对伙伴系统针对单一页面的分配需求采取的批量分配“每CPU单一页面缓存”的方式!每一个CPU拥有一个单一页面缓存池,需要单一页面的时候,可以无需加锁从当前CPU对应的页面池中获取页面。而当池中页面不足时,系统会批量从伙伴系统中拉取一堆页面到池中,反过来,在单一页面释放的时候,会择优将其释放到每CPU的单一页面缓存中。

为了维持“每CPU单一页面缓存”中页面的数量不会太多或太少(太多会影响伙伴系统,太少会影响CPU的需求),系统保持了两个值,当缓存页面数量低于low值的时候,便从伙伴系统中批量获取页面到池中,而当缓存页面数量大于high的时候,便会释放一些页面到伙伴系统中。

小结

多CPU操作系统内核中,关键的开销就是锁的开销。

我认为这是一开始的设计导致的,因为一开始,多核CPU并没有出现,单核CPU上的共享保护几乎都是可以用“禁中断”,“禁抢占”来简单实现的,到了多核时代,操作系统同样简单平移到了新的平台,因此同步操作是在单核的基础上后来添加的。

简单来讲,目前的主流操作系统都是在单核年代创造出来的,因此它们都是顺应单核环境的,对于多核环境,可能它们一开始的设计就有问题。

不管怎么说,优化操作的不二法门就是禁止或者尽量减少锁的操作。随之而来的思路就是为共享的关键数据结构创建”每CPU的缓存“,而这类缓存分为两种类型:

1. 数据通路缓存

比如路由表之类的数据结构,你可以用RCU锁来保护,当然如果为每一个CPU都创建一个本地路由表缓存,也是不错的,现在的问题是何时更新它们,因为所有的缓存都是平级的,因此一种批量同步的机制是必须的。

2. 管理机制缓存

比如slab对象缓存这类,其生命周期完全取决于使用者,因此不存在同步问题,然而却存在管理问题。

采用分级cache的思想是好的,这个非常类似于CPU的L1/L2/L3缓存,采用这种平滑的开销逐渐增大,容量逐渐增大的机制,并配合以设计良好的换入/换出等算法,效果是非常明显的。

以上就是简述优化 Linux 内存性能的核心思想的详细内容,更多请关注知识资源分享宝库其它相关文章!

版权声明

本站内容来源于互联网搬运,
仅限用于小范围内传播学习,请在下载后24小时内删除,
如果有侵权内容、不妥之处,请第一时间联系我们删除。敬请谅解!
E-mail:dpw1001@163.com

分享:

扫一扫在手机阅读、分享本文

发表评论
热门文章
  • 华为 Mate 70 性能重回第一梯队 iPhone 16 最后一块遮羞布被掀

    华为 Mate 70 性能重回第一梯队 iPhone 16 最后一块遮羞布被掀
    华为 mate 70 或将首发麒麟新款处理器,并将此前有博主爆料其性能跑分将突破110万,这意味着 mate 70 性能将重新夺回第一梯队。也因此,苹果 iphone 16 唯一能有一战之力的性能,也要被 mate 70 拉近不少了。 据悉,华为 Mate 70 性能会大幅提升,并且销量相比 Mate 60 预计增长40% - 50%,且备货充足。如果 iPhone 16 发售日期与 Mate 70 重合,销量很可能被瞬间抢购。 不过,iPhone 16 还有一个阵地暂时难...
  • 酷凛 ID-COOLING 推出霜界 240/360 一体水冷散热器,239/279 元

    酷凛 ID-COOLING 推出霜界 240/360 一体水冷散热器,239/279 元
    本站 5 月 16 日消息,酷凛 id-cooling 近日推出霜界 240/360 一体式水冷散热器,采用黑色无光低调设计,分别定价 239/279 元。 本站整理霜界 240/360 散热器规格如下: 酷凛宣称这两款水冷散热器搭载“自研新 V7 水泵”,采用三相六极马达和改进的铜底方案,缩短了水流路径,相较上代水泵进一步提升解热能力。 霜界 240/360 散热器的水泵为定速 2800 RPM 设计,噪声 28db (A)。 两款一体式水冷散热器采用 27mm 厚冷排,...
  • 惠普新款战 99 笔记本 5 月 20 日开售:酷睿 Ultra / 锐龙 8040,4999 元起

    惠普新款战 99 笔记本 5 月 20 日开售:酷睿 Ultra / 锐龙 8040,4999 元起
    本站 5 月 14 日消息,继上线官网后,新款惠普战 99 商用笔记本现已上架,搭载酷睿 ultra / 锐龙 8040处理器,最高可选英伟达rtx 3000 ada 独立显卡,售价 4999 元起。 战 99 锐龙版 R7-8845HS / 16GB / 1TB:4999 元 R7-8845HS / 32GB / 1TB:5299 元 R7-8845HS / RTX 4050 / 32GB / 1TB:7299 元 R7 Pro-8845HS / RTX 2000 Ada...
  • Nginx服务器的HTTP/2协议支持和性能提升技巧介绍

    Nginx服务器的HTTP/2协议支持和性能提升技巧介绍
    Nginx服务器的HTTP/2协议支持和性能提升技巧介绍 引言:随着互联网的快速发展,人们对网站速度的要求越来越高。为了提供更快的网站响应速度和更好的用户体验,Nginx服务器的HTTP/2协议支持和性能提升技巧变得至关重要。本文将介绍如何配置Nginx服务器以支持HTTP/2协议,并提供一些性能提升的技巧。 一、HTTP/2协议简介:HTTP/2协议是HTTP协议的下一代标准,它在传输层使用二进制格式进行数据传输,相比之前的HTTP1.x协议,HTTP/2协议具有更低的延...
  • python怎么调用其他文件函数

    python怎么调用其他文件函数
    在 python 中调用其他文件中的函数,有两种方式:1. 使用 import 语句导入模块,然后调用 [模块名].[函数名]();2. 使用 from ... import 语句从模块导入特定函数,然后调用 [函数名]()。 如何在 Python 中调用其他文件中的函数 在 Python 中,您可以通过以下两种方式调用其他文件中的函数: 1. 使用 import 语句 优点:简单且易于使用。 缺点:会将整个模块导入到当前作用域中,可能会导致命名空间混乱。 步骤:...