在第 1 部分中,我们为代码审查器构建了核心分析工具。现在我们将创建一个可以有效使用这些工具的人工智能助手。我们将逐步介绍每个组件,解释所有组件如何协同工作。
有关 clientai 的文档,请参阅此处;有关 github repo,请参阅此处。
系列索引- 第 1 部分:简介、设置、工具创建
- 第 2 部分:构建助手和命令行界面(你在这里)
首先,我们需要让我们的工具可供人工智能系统使用。以下是我们注册它们的方法:
def create_review_tools() -> list[toolconfig]: """create the tool configurations for code review.""" return [ toolconfig( tool=analyze_python_code, name="code_analyzer", description=( "analyze python code structure and complexity. " "expects a 'code' parameter with the python code as a string." ), scopes=["observe"], ), toolconfig( tool=check_style_issues, name="style_checker", description=( "check python code style issues. " "expects a 'code' parameter with the python code as a string." ), scopes=["observe"], ), toolconfig( tool=generate_docstring, name="docstring_generator", description=( "generate docstring suggestions for python code. " "expects a 'code' parameter with the python code as a string." ), scopes=["act"], ), ]
让我们来分解一下这里发生的事情:
-
每个工具都包装在一个 toolconfig 对象中,该对象告诉 clientai:
- 工具:实际调用的函数
- 名称:工具的唯一标识符
- 描述:该工具的用途以及它需要哪些参数
- 范围:工具何时可以使用(“观察”用于分析,“行动”用于生成)
-
我们将工具分为两类:
- “观察”工具(code_analyzer 和 style_checker)收集信息
- “act”工具(docstring_generator)产生新内容
现在让我们创建我们的人工智能助手。我们将其设计为分步骤工作,模仿人类代码审查者的想法:
class codereviewassistant(agent): """an agent that performs comprehensive python code review.""" @observe( name="analyze_structure", description="analyze code structure and style", stream=true, ) def analyze_structure(self, code: str) -> str: """analyze the code structure, complexity, and style issues.""" self.context.state["code_to_analyze"] = code return """ please analyze this python code structure and style: the code to analyze has been provided in the context as 'code_to_analyze'. use the code_analyzer and style_checker tools to evaluate: 1. code complexity and structure metrics 2. style compliance issues 3. function and class organization 4. import usage patterns """
第一个方法至关重要:
- @observe 装饰器将其标记为观察步骤
- stream=true 启用实时输出
- 我们将代码存储在上下文中,以便在后续步骤中访问它
- 返回字符串是指导ai使用我们的工具的提示
接下来,我们添加改进建议步骤:
@think( name="suggest_improvements", description="suggest code improvements based on analysis", stream=true, ) def suggest_improvements(self, analysis_result: str) -> str: """generate improvement suggestions based on the analysis results.""" current_code = self.context.state.get("current_code", "") return f""" based on the code analysis of: ``` {% endraw %} python {current_code} {% raw %} ``` and the analysis results: {analysis_result} please suggest specific improvements for: 1. reducing complexity where identified 2. fixing style issues 3. improving code organization 4. optimizing import usage 5. enhancing readability 6. enhancing explicitness """
这个方法:
- 使用@think来表明这是一个推理步骤
- 将分析结果作为输入
- 从上下文中检索原始代码
- 创建改进建议的结构化提示
现在让我们创建一个用户友好的界面。我们将其分解为几个部分:
def main(): # 1. set up logging logger = logging.getlogger(__name__) # 2. configure ollama server config = ollamaserverconfig( host="127.0.0.1", # local machine port=11434, # default ollama port gpu_layers=35, # adjust based on your gpu cpu_threads=8, # adjust based on your cpu )
第一部分设置错误日志记录,使用合理的默认值配置 ollama 服务器,并允许自定义 gpu 和 cpu 使用情况。
接下来,我们创建ai客户端和助手:
# use context manager for ollama server with ollamamanager(config) as manager: # initialize clientai with ollama client = clientai( "ollama", host=f"http://{config.host}:{config.port}" ) # create code review assistant with tools assistant = codereviewassistant( client=client, default_model="llama3", tools=create_review_tools(), tool_confidence=0.8, # how confident the ai should be before using tools max_tools_per_step=2, # maximum tools to use per step )
此设置的要点:
- 上下文管理器(with)确保正确的服务器清理
- 我们连接到本地 ollama 实例
- 助手配置有:
- 我们的定制工具
- 工具使用的置信度阈值
- 每个步骤的工具限制,以防止过度使用
最后,我们创建交互式循环:
print("code review assistant (local ai)") print("enter python code to review, or 'quit' to exit.") print("end input with '###' on a new line.") while true: try: print(" " + "=" * 50 + " ") print("enter code:") # collect code input code_lines = [] while true: line = input() if line == "###": break code_lines.append(line) code = " ".join(code_lines) if code.lower() == "quit": break # process the code result = assistant.run(code, stream=true) # handle both streaming and non-streaming results if isinstance(result, str): print(result) else: for chunk in result: print(chunk, end="", flush=true) print(" ") except exception as e: logger.error(f"unexpected error: {e}") print(" an unexpected error occurred. please try again.")
此界面:
- 收集多行代码输入,直到看到“###”
- 处理流式和非流式输出
- 提供干净的错误处理
- 允许通过“退出”轻松退出
让我们将其设为我们能够运行的脚本:
if __name__ == "__main__": main()使用助手
让我们看看助手如何处理真实的代码。让我们运行一下:
python code_analyzer.py
这是一个需要查找问题的示例:
def calculate_total(values,tax_rate): Total = 0 for Val in values: if Val > 0: if tax_rate > 0: Total += Val + (Val * tax_rate) else: Total += Val return Total
小助手会多方面分析:
- 结构问题(嵌套 if 语句增加复杂性、缺少类型提示、无输入验证)
- 样式问题(变量命名不一致、逗号后缺少空格、缺少文档字符串)
以下是增强助手的一些方法:
- 其他分析工具
- 增强的样式检查
- 文档改进
- 自动修复功能
通过创建新的工具函数,将其包装为适当的 json 格式,将其添加到 create_review_tools() 函数,然后更新助手的提示以使用新工具,可以添加其中的每一个。
要了解有关 clientai 的更多信息,请访问文档。
与我联系如果您有任何疑问,想要讨论技术相关主题或分享您的反馈,请随时在社交媒体上与我联系:
- github:igorbenav
- x/twitter:@igorbenav
- 领英:伊戈尔
以上就是使用 ClientAI 和 Ollama 构建本地 AI 代码审查器 - 第 2 部分的详细内容,更多请关注知识资源分享宝库其它相关文章!
版权声明
本站内容来源于互联网搬运,
仅限用于小范围内传播学习,请在下载后24小时内删除,
如果有侵权内容、不妥之处,请第一时间联系我们删除。敬请谅解!
E-mail:dpw1001@163.com
发表评论